Die Darstellung des Graphen erfolgt in Form einer einfachen Tabelle mit den Spalten
ID
, SOURCE
, DESTINATION
und DISTANCE
.Als Beispiel dient der folgende Graph:

Die zugehörige Tabelle stellt sich dann wie folgt dar:
ID SOURCE DESTINATION DISTANCE ---------- ---------- ----------- -------- 1 1 2 4 1 1 3 6 1 1 4 8 1 2 5 7 1 2 3 1 1 3 4 2 1 3 5 5 1 3 6 4 1 4 6 5 1 5 7 6 1 6 5 1 1 6 7 8Auf dieser Grundlage sollen jetzt die kürzesten Wege ausgehend von Knoten 1 gefunden werden, wenngleich von jedem Knoten begonnen werden kann.
Der Aufruf der PL/SQL-Table-Function geht so:
select * from table(dijkstra(1,1)) order by vertex;
VERTEX DISTANCE PREDECESSOR PATH ---------- -------- ----------- ----------------------- 1 0 1 2 4 1 1 -> 2 3 5 2 1 -> 2 -> 3 4 7 3 1 -> 2 -> 3 -> 4 5 10 3 1 -> 2 -> 3 -> 5 6 9 3 1 -> 2 -> 3 -> 6 7 16 5 1 -> 2 -> 3 -> 5 -> 7Die Spalte
DISTANCE
gibt die minimale Distanz zum jeweiligen Knoten an, die Spalte PREDECESSOR
enthält den direkten Vorgänger und die Spalte PATH
enthält die Knoten, welche auf dem kürzesten Weg zurückgelegt wurden.Nach dieser kurzen Demonstration der Funktionsweise hier der zugehörige Code:
-- Tabelle drop table graph; create table graph ( id integer, source integer, destination integer, distance number(38,2) not null ); alter table graph add constraint pk_graph primary key (id, source, destination); alter table graph add constraint c_graph_source check (source > 0); alter table graph add constraint c_graph_destination check (destination > 0); alter table graph add constraint c_graph_distance check (distance >= 0); -- Daten insert into graph(id,source,destination,distance) values(1,1,2,4); insert into graph(id,source,destination,distance) values(1,1,3,6); insert into graph(id,source,destination,distance) values(1,1,4,8); insert into graph(id,source,destination,distance) values(1,2,5,7); insert into graph(id,source,destination,distance) values(1,2,3,1); insert into graph(id,source,destination,distance) values(1,3,4,2); insert into graph(id,source,destination,distance) values(1,3,5,5); insert into graph(id,source,destination,distance) values(1,3,6,4); insert into graph(id,source,destination,distance) values(1,4,6,5); insert into graph(id,source,destination,distance) values(1,5,7,6); insert into graph(id,source,destination,distance) values(1,6,5,1); insert into graph(id,source,destination,distance) values(1,6,7,8); commit; -- Type drop type dijkstra_tab; drop type dijkstra_t; create type dijkstra_t as object ( vertex integer, distance binary_double, predecessor integer, path varchar2(4000) ); / create type dijkstra_tab as table of dijkstra_t; / -- Table function create or replace function dijkstra(p_graph_in in binary_integer, p_vertex_in in binary_integer) return dijkstra_tab pipelined is graph_not_found exception; vertex_not_found exception; type unchecked_tab is table of binary_integer index by binary_integer; type predecessor_tab is table of binary_integer index by binary_integer; type distance_tab is table of binary_double index by binary_integer; cursor init_cur is select source vertex from graph where id = p_graph_in union select destination vertex from graph where id = p_graph_in; cursor distance_cur(pc_vertex_in in binary_integer) is select destination, distance from graph where id = p_graph_in and source = pc_vertex_in; i binary_integer; v_dummy varchar(10); v_unchecked unchecked_tab; v_predecessor predecessor_tab; v_distance distance_tab; v_minimum binary_integer; v_alternative binary_double; v_path varchar2(4000); begin begin select 'TRUE' into v_dummy from dual where exists ( select * from graph where id = p_graph_in ); exception when no_data_found then raise graph_not_found; end; begin select 'TRUE' into v_dummy from dual where exists ( select * from graph where id = p_graph_in and (source = p_vertex_in or destination = p_vertex_in) ); exception when no_data_found then raise vertex_not_found; end; begin for init_rec in init_cur loop v_unchecked(init_rec.vertex) := null; v_predecessor(init_rec.vertex) := null; v_distance(init_rec.vertex) := binary_double_infinity; end loop; v_distance(p_vertex_in) := 0; end; begin while (v_unchecked.count > 0) loop v_minimum := null; i := v_unchecked.first; while (i is not null) loop if (v_minimum is null) then v_minimum := i; else if (v_distance(i) < v_distance(v_minimum)) then v_minimum := i; end if; end if; i := v_unchecked.next(i); end loop; v_unchecked.delete(v_minimum); for distance_rec in distance_cur(v_minimum) loop if (v_unchecked.exists(distance_rec.destination)) then v_alternative := v_distance(v_minimum) + distance_rec.distance; if (v_alternative < v_distance(distance_rec.destination)) then v_distance(distance_rec.destination) := v_alternative; v_predecessor(distance_rec.destination) := v_minimum; end if; end if; end loop; if (v_distance(v_minimum) = binary_double_infinity) then v_path := ''; else v_path := v_minimum; end if; i := v_predecessor(v_minimum); while (i is not null) loop v_path := i || ' -> ' || v_path; i := v_predecessor(i); end loop; pipe row( dijkstra_t ( v_minimum, v_distance(v_minimum), v_predecessor(v_minimum), v_path ) ); end loop; end; exception when graph_not_found then raise_application_error(-20010, 'DIJKSTRA: The graph was not found.'); when vertex_not_found then raise_application_error(-20011, 'DIJKSTRA: The vertex to start the algorithm was not found.'); when others then raise_application_error(-20012, 'DIJKSTRA: Unexpected error: ' || substr(1,200,SQLERRM)); end;
Keine Kommentare:
Kommentar veröffentlichen